# WHAT'S NEW IN CORN SILAGE? HYBRIDS QUALITY FEEDING

Jim Linn
Department of Animal Science
University of Minnesota, St. Paul MN

### Corn Silage in Minnesota

- 7.7 million tons harvested in 2002
- Average dairy cows eats 40 lb/day Range 0 to 70 lb/cow/day
- Excellent source of energy (starch)
- Good source of fiber

### Corn Plant Challenges

Stalk

Corn

**Nutrient Content and Availability** 

Whole Plant

### CORN SILAGE HYBRIDS

- **Brown Midrib**
- Leafy
- High Lysine
- High Oil
- Waxy

### Brown Midrib Corn Silage

■ Beneficial traits

Reduced lignin - higher fiber digestibility

### **Brown Midrib Corn Silage**

|             | Control  | Corn Sil       | lb/d difference |           |
|-------------|----------|----------------|-----------------|-----------|
| Study       | Corn Sil | % of DM        | Milk            | DM intake |
| MD -2001    | lso      | 60             | +6.8            | +5.3      |
| MI St -1999 | Iso      | <b>45</b>      | +6.1            | +4.6      |
| NY - 2001   | Conv     | 31             | +4.8            | NR        |
| MN – 2001   | Conv     | 38             | <b>+5.7</b>     | +1.8      |
| WI – 2000   | Conv     | <b>32 – 40</b> | -3.1            | 0         |

### Leafy Corn Silage

#### Beneficial traits

More leaves above the ear Improved fiber and DM digestibility Increased yield per acre?

### Leafy Corn Silage

|           | Control  | Corn Sil  | lb/d difference |             |
|-----------|----------|-----------|-----------------|-------------|
| Study     | Corn Sil | % of DM   | Milk            | DM intake   |
| MN - 1999 | Grain    | 40        | -1.4            | -1.0        |
| MN - 2002 | Grain    | 40        | -2.2            | +0.7        |
| NY - 2001 | Grain    | 31        | -0.2            | NR          |
| WI - 2002 | Grain    | <b>42</b> | +3.1            | <b>+2.0</b> |
| WI - 2000 | Grain    | <b>33</b> | -0.5            | -1.3        |
| NY - 2001 | Dual P   | <b>26</b> | +3.3            | <b>-2.0</b> |
| OH - 2002 | Dual P   | <b>45</b> | +1.6            | -0.5        |

### High Lysine Corn Silage

### Beneficial traits

Higher lysine content (.26 vs .4%) in grain DM Higher starch and DM digestibility ?

### Research results

| i itooodi oii ioo    |               |             |      |
|----------------------|---------------|-------------|------|
| <b>Beek and Dado</b> | DMI           | Milk        | Fat  |
| %                    | lb/           | day         |      |
|                      |               |             | 4.00 |
| Reg CS - Reg G       | <b>52.1</b>   | <b>58.5</b> | 4.03 |
| Reg CS - HL G        | 49.9          | <b>59.0</b> | 4.00 |
| HL CS - Reg G        | <b>56.1</b> * | <b>59.8</b> | 4.02 |
| HL CS - HL G         | <b>55.4</b> * | <b>59.4</b> | 3.91 |
|                      |               |             |      |

### High Oil Corn Silage

### Beneficial traits

More oil in kernel Normal 3.5 to 4% Hi Oil >6.5% plus

#### **■ Research results**

| Study         | DMI         | Milk        | Fat  |
|---------------|-------------|-------------|------|
| Minnesota     |             | Ib/ day     | %    |
| Control       | <b>53.9</b> | 89.8        | 3.38 |
| Hi Oil        | <b>59.0</b> | 90.4        | 3.55 |
| Control + fat | <b>53.7</b> | <b>88.2</b> | 3.61 |

### Waxy Corn Silage

- Beneficial traits
  Softer kernel more digestible?
- Research results

  Corn silage None

Grain study - ND and MN (Crookston)

Cows fed waxy corn ate 3.6% more DM

No differences in milk production

(73 lb/day)



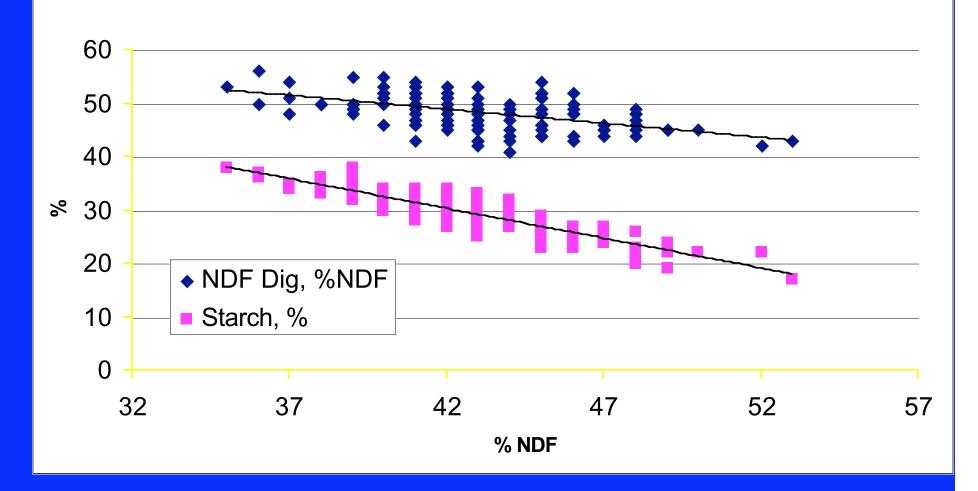
### Variation in Corn Silage Quality

AnalysisAverageRangeCP, %<sup>1</sup>9.35.9

### Factors Affecting the Feeding Value

- **Dry Matter (DM) or Moisture**
- Starch form and digestibility
- **Fiber content and digestibility**
- Particle size (whole plant and kernel)

### Corn Silage Quality Maturity vs DM Content


|          | DM content of Corn silage (%) |             |            |  |
|----------|-------------------------------|-------------|------------|--|
| Nutrient | 31.1                          | <b>34.2</b> | 43.6       |  |
| CP, %    | 7.0                           | 7.4         | <b>6.7</b> |  |
| NDF, %   | 43.9                          | 41.2        | 43.7       |  |
| NFC, %   | 40.7                          | <b>42.9</b> | 41.1       |  |

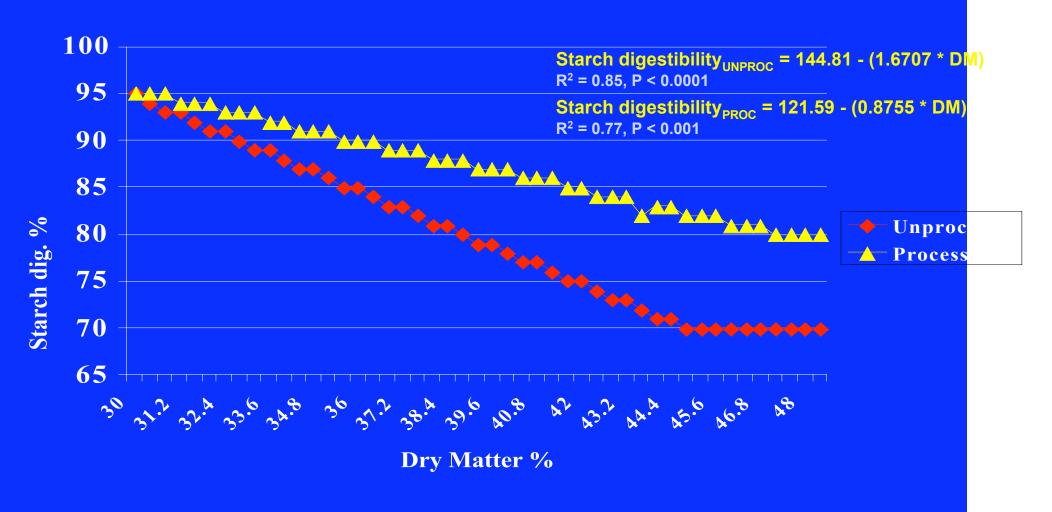
Normal growing year – normal maturing

### Effect of DM on Nutrient Composition and Digestibility

DM, %30323542NDF, %52444041Starch, %

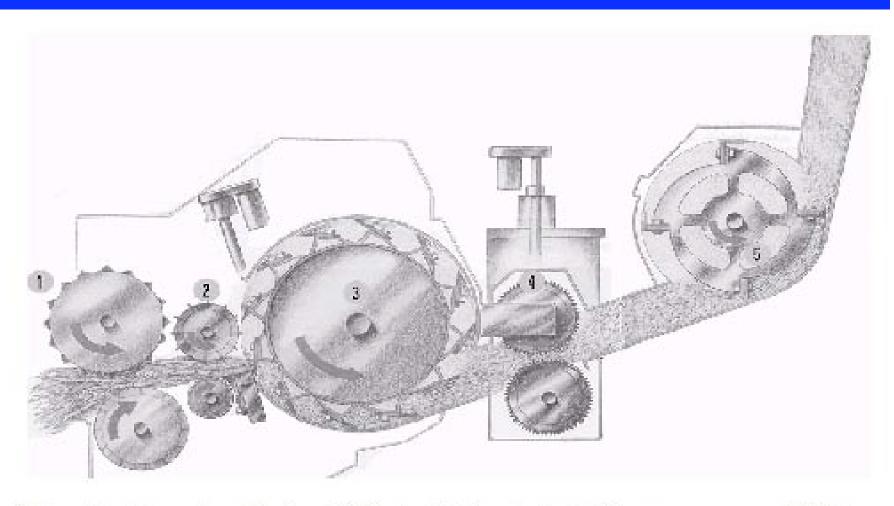





### Impact of Corn Silage NDF Digestibility on Milk

|                              | 45% NDFD       | 58% NDFD       |
|------------------------------|----------------|----------------|
| <u>ltem</u>                  | <u>lb DM/d</u> | <u>lb DM/d</u> |
| Alfalfa (45 % NDFD)          | 10             | 10             |
| Corn Silage (45 vs 58% NDFD) | <b>23</b>      | <b>23</b>      |
| Corn                         | 10             | 10             |
| Cottonseed                   | 5              | <b>5</b>       |
| Protein & Mineral            | <b>7.4</b>     | <b>7.4</b>     |
| DMI                          | <b>55.4</b>    | <b>55.4</b>    |
| NE <sub>L</sub> Milk, lb/day | 96,6           | 98.2           |
| MP milk, lb/day              | 93.5           | 94.5           |

### Corn Silage & Starch Digestibility?




### Predicted Total Tract Starch Digestibility Shaver, 2002



\*Based on data of Bal et al., 2000; Dhiman et al., 2000; Rojas-Bourrillon et al.1987

### Corn Silage Processing & Particle Size



Schematic of harvester with O and O feed rolls, O cutterhead, O crop processor and O blower.

### Effect of Maturity on Corn Silage Particle Size

|               | % DM        |             |             |
|---------------|-------------|-------------|-------------|
| Particle inch | 31.1        | <b>34.2</b> | 43.6        |
| > 3/4         | 8.9         | 10.0        | 10.0        |
| 1/3 — 3/4     | 61.8        | <b>59.8</b> | <b>55.1</b> |
| < 1/3         | <b>29.3</b> | <b>30.2</b> | 34.9        |

## Effect of Corn Silage Particle Size on DM Intake and Eating

| TMR             | Short      | Med<br>Short | Med<br>Long | Long         |
|-----------------|------------|--------------|-------------|--------------|
| Top %           | 2.9        | <b>6.7</b>   | 11.1        | <b>15.5</b>  |
| Middle %        | 92.8       | 89.5         | 85.0        | <b>80.</b> 6 |
| Bottom %        | <b>4.2</b> | 4.0          | 3.9         | 3.9          |
| TMR – DMI, lb/d | 61.7       | <b>59.1</b>  | <b>59.1</b> | <b>56.</b> 6 |
| Milk – lb/d     | 91.0       | 93,3         | 91.5        | 90.6         |

TMR – 57% corn silage

### Corn Silage Particle Size on Milk Production

| Corn Sil      | Short       | Long        |
|---------------|-------------|-------------|
| > 3/4, %      | <b>28.8</b> | 34.4        |
| 1/4 to 3/4, % | <b>34.0</b> | <b>25.3</b> |
| < 1/4, %      | <b>37.2</b> | <b>40.2</b> |
| DMI, Ib/d     | <b>56.6</b> | <b>55.1</b> |
| Milk, Ib/d    | 91.9        | 90.4        |



## Corn Silage Quality Today Where Are We?

Hybrid differences
Environment – wet to drought
Fiber (NDF) and Starch
Quantity
Digestibility

**ANALYSIS REQUIRED** 

### Minimum concentrations of total and forage NE and maximum concentrations of NFC (% of DM)

| Min Forage | Min Total | Max       | Min       |
|------------|-----------|-----------|-----------|
| NDF        | NDF       | NFC       | ADF       |
| 19         | <b>25</b> | 44        | 17        |
| 18         | <b>27</b> | 42        | 18        |
| 17         | <b>29</b> | 40        | 19        |
| <b>16</b>  | <b>31</b> | <b>38</b> | <b>20</b> |
| <b>15</b>  | <b>33</b> | <b>36</b> | <b>21</b> |

Values in this table are based on the assumption that actual feed composition has been measured .

Based on data where TMR fed and dry ground corn was starch source.

### Particle Size Influences Feeding Value

### Penn State Box Guidelines – Corn Silage

**Top** < 10%

 $\frac{\text{Middle}}{\text{Middle}} > 60\%$ 

 $\overline{\text{Bottom}} < 30\%$ 

Processed and Unprocessed



### Corn Silage Feeding Guidelines

- Quantity in lactation diets
  - Range = 0 to 100% of forage DM
  - Optimum 50 to 75% of forage DM
- NDF Guidelines (CS > 65% of forage)
  - Total NDF in diet 30 to 34% of DM
  - Forage NDF 22 to 25% of diet DM
- Guidelines vary with quality and hybrid

# REMEMBER FORAGE QUALITY PAYS





THANK YOU